Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Model identification of a network as compressing sensing

Articolo
Data di Pubblicazione:
2013
Citazione:
Model identification of a network as compressing sensing / Materassi, D; Innocentig, ; Giarrè, Laura; Salapaka, M.. - In: SYSTEMS & CONTROL LETTERS. - ISSN 0167-6911. - 62:8(2013), pp. 664-672. [10.1016/j.sysconle.2013.04.004]
Abstract:
In many applications, it is of interest to derive information about the topology and the internal connections of multiple dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network with no a-priori knowledge on its topology. It is assumed that the network nodes are passively observed and data are collected in the form of time series. The underlying structure is then determined by the non-zero entries of a “sparse Wiener filter”. We cast the problem as the optimization of a quadratic cost function, where a set of parameters are used to operate a trade-off between accuracy and complexity in the final model.
Tipologia CRIS:
Articolo su rivista
Keywords:
Identification; Sparsification; Reduced models; Networks; Compressive sensing
Elenco autori:
Materassi, D; Innocentig, ; Giarrè, Laura; Salapaka, M.
Autori di Ateneo:
GIARRÈ Laura
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1123500
Pubblicato in:
SYSTEMS & CONTROL LETTERS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.3.0