A detection-estimation approach with refinement to filtering for Gaussian systems with intermittent observations
Contributo in Atti di convegno
Data di Pubblicazione:
2016
Citazione:
A detection-estimation approach with refinement to filtering for Gaussian systems with intermittent observations / Fasano, Antonio; Longhi, Sauro; Monteriù, Andrea; Villani, Valeria. - (2016), pp. 2035-2040. (Intervento presentato al convegno 55th IEEE Conference on Decision and Control, CDC 2016 tenutosi a ARIA Resort and Casino, usa nel 2016) [10.1109/CDC.2016.7798563].
Abstract:
In this paper we consider the problem of state estimation for linear discrete-time Gaussian systems with intermittent observations resulting from packet dropouts. We assume that the receiver does not know the sequence of packet dropouts. This is a typical situation, e.g., in wireless sensor networks. Under this hypothesis, the problem of state estimation has been previously solved by the authors using a detection-estimation approach consisting of two stages: the first is a nonlinear optimal detector, which decides if a packet dropout has occurred, and the second is a time-varying Kalman filter, which is fed with both the observations and the decisions from the first stage. This work extends that solution, introducing a refinement stage whose purpose is to significantly improve the decision on packet dropouts and, in turn, on state estimation. The overall estimator has finite memory and the tradeoff between performance and computational complexity can be easily controlled. Numerical results highlight the effectiveness of the approach based on detection-estimation with refinement, which outperforms both the estimator without refinement and the optimal linear filter of Nahi.
Tipologia CRIS:
Relazione in Atti di Convegno
Keywords:
Artificial Intelligence; Decision Sciences (miscellaneous); Control and Optimization
Elenco autori:
Fasano, Antonio; Longhi, Sauro; Monteriù, Andrea; Villani, Valeria
Link alla scheda completa:
Titolo del libro:
2016 IEEE 55th Conference on Decision and Control, CDC 2016
Pubblicato in: