Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Effect of high temperature exposure on epoxy-coated glass textile reinforced mortar (GTRM) composites

Articolo
Data di Pubblicazione:
2019
Citazione:
Effect of high temperature exposure on epoxy-coated glass textile reinforced mortar (GTRM) composites / Messori, M.; Nobili, A.; Signorini, C.; Sola, A.. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - 212:(2019), pp. 765-774. [10.1016/j.conbuildmat.2019.04.026]
Abstract:
An experimental investigation on the mechanical performance of epoxy-coated Alkali-Resistant (AR) glass textile reinforced mortar subjected to elevated temperature is presented. Two epoxy coatings are considered, which differ by the hardening agent alone. After 56 days dry curing, specimens are heated up to four different temperatures. After cooling down to ambient temperature, specimens are assessed in uni-axial tensile test according to Annex A of AC434. First cracking strength and elongation, ultimate tensile strength and elongation, cracked and uncracked moduli, transition point location and energy dissipation capability are evaluated. It is found that, in the explored temperature range, degradation is surprisingly mild and strongly dependent on the resin which is taken as coating agent. Indeed, temperature exposure may lead to strength enhancement. This positive outcome takes place at the expense of ductility and it is traced back, through Differential Scanning Calorimetry (DSC), to a post-curing process. Nonetheless, energy dissipation still decreases with temperature and, remarkably, with the same power-law behaviour for both resins. Such behaviour is compatible with a cumulative Weibull distribution, that is adopted in thermal damage models for resins, and it indicates that the underlying damage mechanism indeed operates on the resin at the fabric-to-matrix interface. (C) 2019 Elsevier Ltd. All rights reserved.
Tipologia CRIS:
Articolo su rivista
Keywords:
Epoxy coating; High temperature; TRM
Elenco autori:
Messori, M.; Nobili, A.; Signorini, C.; Sola, A.
Autori di Ateneo:
NOBILI Andrea
SIGNORINI CESARE
SOLA Antonella
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1184589
Link al Full Text:
https://iris.unimore.it//retrieve/handle/11380/1184589/231941/epoxy_temperature.pdf
Pubblicato in:
CONSTRUCTION AND BUILDING MATERIALS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.3.0