Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Exploration of Convolutional Neural Network models for source code classification

Articolo
Data di Pubblicazione:
2021
Citazione:
Exploration of Convolutional Neural Network models for source code classification / Barchi, F.; Parisi, E.; Urgese, G.; Ficarra, E.; Acquaviva, A.. - In: ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. - ISSN 0952-1976. - 97:(2021), pp. 1-13. [10.1016/j.engappai.2020.104075]
Abstract:
The application of Artificial Intelligence is becoming common in many engineering fields. Among them, one of the newest and rapidly evolving is software generation, where AI can be used to automatically optimise the implementation of an algorithm for a given computing platform. In particular, Deep Learning technologies can be used to the decide how to allocate pieces of code to hardware platforms with multiple cores and accelerators, that are common in high performance and edge computing applications. In this work, we explore the use of Convolutional Neural Networks (CNN)s to analyse the application source code and decide the best compute unit to minimise the execution time. We demonstrate that CNN models can be successfully applied to source code classification, providing higher accuracy with consistently reduced learning time with respect to state-of-the-art methods. Moreover, we show the robustness of the method with respect to source code pre-processing, compiler options and hyper-parameters selection.
Tipologia CRIS:
Articolo su rivista
Keywords:
Code mapping; Deep learning; Heterogeneous platforms; LLVM-IR
Elenco autori:
Barchi, F.; Parisi, E.; Urgese, G.; Ficarra, E.; Acquaviva, A.
Autori di Ateneo:
FICARRA ELISA
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1240374
Pubblicato in:
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Journal
  • Dati Generali

Dati Generali

URL

https://www.sciencedirect.com/science/article/pii/S0952197620303353
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.3.0