Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

A variable metric proximal stochastic gradient method: An application to classification problems

Articolo
Data di Pubblicazione:
2024
Citazione:
A variable metric proximal stochastic gradient method: An application to classification problems / Cascarano, P.; Franchini, G.; Kobler, E.; Porta, F.; Sebastiani, A.. - In: EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION. - ISSN 2192-4414. - 12:(2024), pp. 100088-100088. [10.1016/j.ejco.2024.100088]
Abstract:
Due to the continued success of machine learning and deep learning in particular, supervised classification problems are ubiquitous in numerous scientific fields. Training these models typically involves the minimization of the empirical risk over large data sets along with a possibly non-differentiable regularization. In this paper, we introduce a stochastic gradient method for the considered classification problem. To control the variance of the objective's gradients, we use an automatic sample size selection along with a variable metric to precondition the stochastic gradient directions. Further, we utilize a non -monotone line search to automatize step size selection. Convergence results are provided for both convex and non-convex objective functions. Extensive numerical experiments verify that the suggested approach performs on par with stateof-the-art methods for training both statistical models for binary classification and artificial neural networks for multi-class image classification. The code is publicly available at https:// github .com /koblererich /lisavm.
Tipologia CRIS:
Articolo su rivista
Keywords:
Variable metric; Stochastic optimization; Classification problem; Deep learning
Elenco autori:
Cascarano, P.; Franchini, G.; Kobler, E.; Porta, F.; Sebastiani, A.
Autori di Ateneo:
FRANCHINI Giorgia
PORTA FEDERICA
SEBASTIANI Andrea
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1348127
Link al Full Text:
https://iris.unimore.it//retrieve/handle/11380/1348127/681164/1-s2.0-S2192440624000054-main.pdf
Pubblicato in:
EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION
Journal
Progetto:
Advanced optimization METhods for automated central veIn Sign detection in multiple sclerosis from magneTic resonAnce imaging
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.0.6