Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Revisiting Machine Learning Potentials for Silicate Glasses: The Missing Role of Dispersion Interactions

Articolo
Data di Pubblicazione:
2025
Citazione:
Revisiting Machine Learning Potentials for Silicate Glasses: The Missing Role of Dispersion Interactions / Pedone, Alfonso; Bertani, Marco; Benassi, Matilde. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 21:9(2025), pp. 4769-4778. [10.1021/acs.jctc.5c00218]
Abstract:
Machine learning interatomic potentials (MLIPs) offer a promising alternative to traditional force fields and ab initio methods for simulating complex materials such as oxide glasses. In this work, we present the first evaluation of the pretrained MACE (Multi-ACE) model [D.P. Kovács et al., J. Chem. Phys. 159(2023), 044118] for silicate glasses, using sodium silicates as a test case. We compare its performance with a DeePMD-based MLIP specifically trained on sodium silicate compositions [M. Bertani et al., J. Chem. Theory Comput. 20(2024), 1358-1370] and assess their accuracy in reproducing structural and dynamical properties. Additionally, we investigate the role of dispersion interactions by incorporating the D3(BJ) correction in both models. Our results show that while MACE accurately reproduces neutron structure factors, pair distribution functions, and Si[Qn] speciation, it performs slightly worst for elastic properties calculations. However, it is suitable for the simulations of sodium silicate glasses. The inclusion of dispersion interactions significantly improves the reproduction of density and elastic properties for both MLIPs, highlighting their critical role in glass modeling. These findings provide insight into the transferability of general MLIPs to disordered systems and emphasize the need for dispersion-aware training data sets in developing accurate force fields for oxide glasses.
Tipologia CRIS:
Articolo su rivista
Keywords:
Machine Learning Potentials MD simulations Silicate Glasses
Elenco autori:
Pedone, Alfonso; Bertani, Marco; Benassi, Matilde
Autori di Ateneo:
BENASSI MATILDE
BERTANI MARCO
PEDONE Alfonso
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1382856
Link al Full Text:
https://iris.unimore.it//retrieve/handle/11380/1382856/912706/Bertani_JCTC2025.pdf
Pubblicato in:
JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.3.0