Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Designing Light-Sensitive Organic Semiconductors with Azobenzenes for Photoelectrochemical Transistors as Neuromorphic Platforms

Articolo
Data di Pubblicazione:
2025
Citazione:
Designing Light-Sensitive Organic Semiconductors with Azobenzenes for Photoelectrochemical Transistors as Neuromorphic Platforms / Berndt Paro, I.; Gini, M.; D' Elia, F.; Massaro, A.; Corrado, F.; Rana, D.; Varela, A.; Elli, G.; Baumann, M.; Piccini, G.; Petti, L.; Leonori, D.; Muñoz-García, A. B.; Pavone, M.; Offenhäusser, A.; Criscuolo, V.; Santoro, F.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - (2025), pp. 1-10. [10.1002/advs.202509125]
Abstract:
Organic neuromorphic electronics aim to emulate the adaptive behavior of biological synapses using soft, biocompatible materials capable of analog and stimulus-responsive modulation. While azobenzene-based semiconductors provide reversible light-induced switching, their application in mixed ionic-electronic conductors for neuromorphic systems remains largely unexplored. In this study, photoresponsive organic photoelectrochemical transistors (OPECTs) are engineered by functionalizing PEDOT:PSS with azobenzene derivatives bearing nitro or fluorine substituents. These modifications alter the electronic structure and surface properties of the gate, enabling systematic tuning of interfacial capacitance, a critical parameter governing photogating and neuromorphic response. Optical and electrochemical measurements, supported by DFT calculations reveal that substituent-dependent modulation of bulk and interfacial capacitance directly impacts gating efficiency. Devices exhibit reversible, analog conductance changes under optical and electrical co-stimulation, emulating both short- and long-term synaptic plasticity. These results establish a structure-capacitance-function relationship and provide a chemically tunable platform for the development of light-responsive neuromorphic interfaces in adaptive bioelectronics.
Tipologia CRIS:
Articolo su rivista
Keywords:
azobenzenes; optoelectronics; organic bioelectronics; organic neuromorphics
Elenco autori:
Berndt Paro, I.; Gini, M.; D' Elia, F.; Massaro, A.; Corrado, F.; Rana, D.; Varela, A.; Elli, G.; Baumann, M.; Piccini, G.; Petti, L.; Leonori, D.; Muñoz-García, A. B.; Pavone, M.; Offenhäusser, A.; Criscuolo, V.; Santoro, F.
Autori di Ateneo:
PICCINI GIOVANNIMARIA
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1387173
Link al Full Text:
https://iris.unimore.it//retrieve/handle/11380/1387173/923717/Advanced%20Science%20-%202025%20-%20Berndt%20Paro%20-%20Designing%20Light%BFSensitive%20Organic%20Semiconductors%20with%20Azobenzenes%20for.pdf
Pubblicato in:
ADVANCED SCIENCE
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.4.0