Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles

Articolo
Data di Pubblicazione:
2022
Citazione:
Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles / Huang, L.; Himawan, E.; Belhadj, S.; Perez Garcia, R. O.; Paquet Durand, F.; Schipper, N.; Buzgo, M.; Simaite, A.; Marigo, V.. - In: PHARMACEUTICS. - ISSN 1999-4923. - 14:1(2022), pp. 1-17. [10.3390/pharmaceutics14010074]
Abstract:
In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > −20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.
Tipologia CRIS:
Articolo su rivista
Keywords:
Drug delivery system; Retinal pigment epithelium; Rod photoreceptor; Thermoresponsive polymer
Elenco autori:
Huang, L.; Himawan, E.; Belhadj, S.; Perez Garcia, R. O.; Paquet Durand, F.; Schipper, N.; Buzgo, M.; Simaite, A.; Marigo, V.
Autori di Ateneo:
MARIGO Valeria
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1257654
Link al Full Text:
https://iris.unimore.it//retrieve/handle/11380/1257654/371641/Huang_Pharmaceutics2022.pdf
Pubblicato in:
PHARMACEUTICS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.11.5.0