Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

NOCTOWL: Adaptive Tree-Based Model for Network Anomaly Detection Under Delayed and Sampled Label Availability

Articolo
Data di Pubblicazione:
2025
Citazione:
NOCTOWL: Adaptive Tree-Based Model for Network Anomaly Detection Under Delayed and Sampled Label Availability / Pederzoli, S.; Paganelli, M.; Contalbo, M. L.; Benassi, R.; Tiano, D.; Iannucci, S.; Guerra, F.. - In: IEEE ACCESS. - ISSN 2169-3536. - 13:(2025), pp. 197899-197911. [10.1109/ACCESS.2025.3633419]
Abstract:
The paper introduces NOCTOWL, an online, interpretable network intrusion detection system designed for streaming environments subject to distributional shifts, with delayed and partial label availability. The method combines the inherently explainable structure of a decision tree with a clustering-based strategy to create interpretable data partitions and incrementally adjust them in response to distribution shifts. The model further incorporates selective sampling to adapt to evolving distributions while preventing unnecessary growth. Experiments on five benchmark datasets simulating realistic operating conditions demonstrate that NOCTOWL achieves competitive performance compared to state-of-the-art systems, while maintaining robustness under constrained annotation budgets.
Tipologia CRIS:
Articolo su rivista
Keywords:
Transformers; Data models; Network intrusion detection; Concept drift; Autoencoders; Training; Computer architecture; Robustness; Anomaly detection; network intrusion detection systems; time series analysis
Elenco autori:
Pederzoli, S.; Paganelli, M.; Contalbo, M. L.; Benassi, R.; Tiano, D.; Iannucci, S.; Guerra, F.
Autori di Ateneo:
BENASSI RICCARDO
CONTALBO MICHELE LUCA
GUERRA Francesco
PAGANELLI MATTEO
PEDERZOLI SARA
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1391549
Pubblicato in:
IEEE ACCESS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.4.0