NOCTOWL: Adaptive Tree-Based Model for Network Anomaly Detection Under Delayed and Sampled Label Availability
Articolo
Data di Pubblicazione:
2025
Citazione:
NOCTOWL: Adaptive Tree-Based Model for Network Anomaly Detection Under Delayed and Sampled Label Availability / Pederzoli, S.; Paganelli, M.; Contalbo, M. L.; Benassi, R.; Tiano, D.; Iannucci, S.; Guerra, F.. - In: IEEE ACCESS. - ISSN 2169-3536. - 13:(2025), pp. 197899-197911. [10.1109/ACCESS.2025.3633419]
Abstract:
The paper introduces NOCTOWL, an online, interpretable network intrusion detection system designed for streaming environments subject to distributional shifts, with delayed and partial label availability. The method combines the inherently explainable structure of a decision tree with a clustering-based strategy to create interpretable data partitions and incrementally adjust them in response to distribution shifts. The model further incorporates selective sampling to adapt to evolving distributions while preventing unnecessary growth. Experiments on five benchmark datasets simulating realistic operating conditions demonstrate that NOCTOWL achieves competitive performance compared to state-of-the-art systems, while maintaining robustness under constrained annotation budgets.
Tipologia CRIS:
Articolo su rivista
Keywords:
Transformers; Data models; Network intrusion detection; Concept drift; Autoencoders; Training; Computer architecture; Robustness; Anomaly detection; network intrusion detection systems; time series analysis
Elenco autori:
Pederzoli, S.; Paganelli, M.; Contalbo, M. L.; Benassi, R.; Tiano, D.; Iannucci, S.; Guerra, F.
Link alla scheda completa:
Pubblicato in: