Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Bayesian Model Updating and Parameter Uncertainty Analysis of a Damaged Fortress Through Dynamic Experimental Data

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
Bayesian Model Updating and Parameter Uncertainty Analysis of a Damaged Fortress Through Dynamic Experimental Data / Ponsi, Federico; Bassoli, Elisa; Vincenzi, Loris. - 156:(2021), pp. 515-533. ( 8th Civil Structural Health Monitoring Workshop, CSHM-8 2021 ONLINE MAR 29-31, 2021) [10.1007/978-3-030-74258-4_34].
Abstract:
A probabilistic analysis for the uncertainty evaluation of model parameters is of great relevance when dealing with structural damage assessment. Indeed, the identification of the damage severity associated to its uncertainty can support the decision-maker to close a bridge or a building for safety reasons. In this paper the results of the model updating of an historical masonry fortress damaged by the seismic event that hits the town of San Felice sul Panaro and the surrounding localities in the Po Valley in the 2012 are presented. A standard and a Bayesian updating procedures are first applied to the calibration of the complex Finite Element (FE) model of the fortress with respect to experimental modal data. The uncertainty of the identified parameters of structural system is then obtained by using the Bayesian probabilistic approach. The most probable parameter vector is obtained by maximizing the posterior probability density function. The robustness and the efficiency of the procedure are evaluated through the comparison with the results obtained from the estimation of the Pareto-optimal solutions.
Tipologia CRIS:
Relazione in Atti di Convegno
Keywords:
Aging structure; Bayesian model updating; Multi-objective optimization
Elenco autori:
Ponsi, Federico; Bassoli, Elisa; Vincenzi, Loris
Autori di Ateneo:
BASSOLI ELISA
PONSI FEDERICO
VINCENZI Loris
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1286867
Titolo del libro:
Lecture Notes in Civil Engineering
Pubblicato in:
LECTURE NOTES IN CIVIL ENGINEERING
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.4.0