Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Implantable Organic Artificial Synapses Exhibiting Crossover between Depressive and Facilitative Plasticity Response

Articolo
Data di Pubblicazione:
2021
Citazione:
Implantable Organic Artificial Synapses Exhibiting Crossover between Depressive and Facilitative Plasticity Response / Calandra Sebastianella, G.; Di Lauro, M.; Murgia, M.; Bianchi, M.; Carli, S.; Zoli, M.; Fadiga, L.; Biscarini, F.. - In: ADVANCED ELECTRONIC MATERIALS. - ISSN 2199-160X. - 7:12(2021), pp. 2100755-N/A. [10.1002/aelm.202100755]
Abstract:
Organic neuromorphic devices mimic signal processing features of biological synapses, with short-term plasticity, STP, modulated by the frequency of the input voltage pulses. Here, an artificial synapse, made of intracortical microelectrodes, is demonstrated that exhibits either depressive or facilitative STP. The crossover between the two STP regimes is controlled by the frequency of the input voltage. STP features are described with an equivalent circuit where an inductance component is introduced in parallel with the RC circuit associated with poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS)||electrolyte interface. The proposed RLC circuit explains the physical origin of the observed STP and its two timescales in terms of charge build up in PEDOT/PSS.
Tipologia CRIS:
Articolo su rivista
Keywords:
artificial synapses; implantable electronics; neuromorphic device modeling; organic neuromorphic devices; short-term plasticity
Elenco autori:
Calandra Sebastianella, G.; Di Lauro, M.; Murgia, M.; Bianchi, M.; Carli, S.; Zoli, M.; Fadiga, L.; Biscarini, F.
Autori di Ateneo:
BIANCHI MICHELE
BISCARINI FABIO
ZOLI Michele
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1270582
Link al Full Text:
https://iris.unimore.it//retrieve/handle/11380/1270582/405047/aelm.202100755.pdf
Pubblicato in:
ADVANCED ELECTRONIC MATERIALS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.4.0