Skip to Main Content (Press Enter)

Logo UNIMORE
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIMORE

|

UNI-FIND

unimore.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Balancing Accuracy and Execution Time for Similar Virtual Machines Identification in IaaS Cloud

Contributo in Atti di convegno
Data di Pubblicazione:
2014
Citazione:
Balancing Accuracy and Execution Time for Similar Virtual Machines Identification in IaaS Cloud / Canali, Claudia; Lancellotti, Riccardo. - ELETTRONICO. - (2014), pp. 137-142. (Intervento presentato al convegno 23rd IEEE International WETICE Conference, WETICE 2014 tenutosi a Parma, Italy nel June 2014) [10.1109/WETICE.2014.57].
Abstract:
Identification of VMs exhibiting similar behavior can improve scalability in monitoring and management of cloud data centers. Existing solutions for automatic VM clustering may be either very accurate, at the price of a high computational cost, or able to provide fast results with limited accuracy. Furthermore, the performance of most solutions may change significantly depending on the specific values of technique parameters. In this paper, we propose a novel approach to model VM behavior using Mixture of Gaussians (MoGs) to approximate the probability density function of resources utilization. Moreover, we exploit the Kullback-Leibler divergence to measure the similarity between MoGs. The proposed technique is compared against the state of the art through a set of experiments with data coming from a private cloud data center. Our experiments show that the proposed technique can provide high accuracy with limited computational requirements. Furthermore, we show that the performance of our proposal, unlike the existing alternatives, does not depend on any parameter
Tipologia CRIS:
Relazione in Atti di Convegno
Keywords:
KL Divergence; Clustering; Resource management
Elenco autori:
Canali, Claudia; Lancellotti, Riccardo
Autori di Ateneo:
CANALI Claudia
LANCELLOTTI Riccardo
Link alla scheda completa:
https://iris.unimore.it/handle/11380/1049116
Titolo del libro:
na
Pubblicato in:
PROCEEDINGS - IEEE INTERNATIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.3.0